DEPTHOFFIELD

 OPTICAL ABERRATIONS \& P UPILLOMETRY IN PRESBYOPICPATIENTSMIKAEL GUEDJ, ALAIN SAAD, DAMIEN GATINEL

- WINTER 2013 -

AIV + CEROC

(1) INTRODUCTION \& CONTEXT

PHOTOGRAPHY

Depth of field
= amount of distance between nearest and farthest objects that appear in acceptably sharp focus in a photograph.

PHOTOGRAPHY

Depth of field
= amount of distance between nearest and farthest objects that appear in acceptably sharp focus in a photograph.

SHALLOW DEPTH OF FIELD

EXTENDED DEPTH OF FIELD

PHOTOGRAPHY

Depth of field \triangleleft FACTORS:
(1) DIAPHRAGM of the opening lens:

P HOTOGRAPHY

Depth of field $\Rightarrow 3$ FACTORS :

(1) DIAPHRAGM of the opening lens : \searrow APERTURE

$$
L_{0}=\frac{f^{\prime} D}{g}=\frac{f^{\prime 2}}{g N}
$$

The aperture you use is the main factor in dictating how much of the scene appears pin-sharp. The narrower the aperture opening (and the larger the f /number) the more of the image will be in focus - and vice versa!

PHOTOGRAPHY

Depth of field \Rightarrow FACTORS :
(1) DIAPHRAGM of the opening lens : \searrow APERTURE (2) SHOOTING DISTANCE: greater

$$
L_{0}=\frac{f^{\prime} D}{g}=\frac{f^{\prime 2}}{g N}
$$

PHOTOGRAPHY

Depth of field \Rightarrow FACTORS:
(1) DIAPHRAGM of the opening lens: \backslash APERTURE (2) SHOOTING DISTANCE: greater
(3) LENS FOCALLENGTH: shorter

$$
L_{0}=\frac{f^{\prime} D}{g}=\frac{f^{\prime 2}}{g N}
$$

PHOTOGRAPHY

Depth of field $\Rightarrow 3$ FACTORS :
(1) DIAPHRAGM of the opening lens : \searrow APERTURE (2) SHOOTING DISTANCE: greater
(3) LENS FOCAL LENGTH: shorter
\Rightarrow Deeper DOF (background $>$ foreground)

E Y E

Depth of field \triangleleft FACTORS:
(1) DIAPHRAGM \Leftrightarrow PUPILDIAMETER
(2) SHOOTING DISTANCE \Leftrightarrow ACCOMMODATION
(3) LENS FOCALLENGTH \Leftrightarrow OPTICAL ABERRATIONS, ANTERIOR CHAMBER DEPTH \& AXIAL LENGTH

E Y E

Depth of field \triangleleft F FACTORS:

(1) DIAPHRAGM \Leftrightarrow PUPIL DIAMETER
(2) SHOOTING DISTANCE \Leftrightarrow ACCOMMODATION
(3) LENS FOCALLENGTH \Leftrightarrow OPTICAL ABERRATIONS, ANTERIOR CHAMBER DEPTH \& AXIAL LENGTH

AUTOFOCUS

ACCOMMODATION

DEFINITIONS

CIRCLES OF CONFUSION

DISTANCE OF ACCEPTABLE

CIRCLES OF CONFUSION

CIRCLES OF CONFUSION

DISTANCE OF ACCEPTABLE

LARGEPUPIL

LARGEPUPIL

S MALL P UPIL

TOO SMALL P UPIL

(2)

P URPOSE

THEQUESTIONS

What are the correlations between depth of field, optical aberrations
and pupillometry in presbyopic patients?
Which aberrations are particularly involved in an extended depth of field ?

Can we refine an eye model for corneal multifocality?

THECONSEQUENCES

Given a particular patient's
corneal wavefront and pupillary diameter, is it possible to predict his effective depth of field?

By inducing a change in the patient's corneal WF (with customised excimer laser treatment), is it possible to increase his net depth of field ?

(3)
 STUDY DESIGN \& METHODS

Age, gender

1. THE DEFOCUS CURVE

- Best spectacle correction (BCVA) placed in the trial frame (Nidek Smart Refractor RT-5100)
- Trial lenses ranging in power from +1 D to -2.5 D added serially in front of
 each eye, decreasing in 0.25 steps.
- Distance vision recorded for each set of trial lenses, in mono and binocular.

1. THE DEFOCUS CURVE

\lesssim obtained by plotting the mean monocular and binocular visual acuities against 15 values of defocus (ranging from +1.0 to -2.5 D in 0.25 D steps)

1. THE DEFOCUS CURVE

1. THEDEFOCUS CURVE

1.THEDEFOCUS CURVE

2. THE WAVEFRONT ANALYSIS

2. THE WAVEFRONT ANALYSIS

OPD SCAN III - NIDEK

1. Emission of an incident laser beam focused on the fovea

2. THE WAVEFRONT ANALYSIS

2. THE WAVEFRONT ANALYSIS

2. THE WAVEFRONT ANALYSIS

4. Measure of the beam deflection compared to the reference position

2. THE WAVEFRONT ANALYSIS

5. Mathematical integration for a 3D plotting of the WF. (decomposition using Zernike polynomials)

2. THE WAVEFRONT ANALYSIS

ROOT MEAN SQUARE

WF "Best fit WF"

ExamNo	1	Date	12/11/2013 15:03	Comment		Diagnosis

L

Classifier

ExamNo	1	Date	12/11/2013 15:03	Comment		Diagnosis

L

Classifier

2. THE WAVEFRONT ANALYSIS

ZERNIKE POLYNOMIALS

3. THE PUPILLOMETRY

WAVELIGHT ALLEGRO TOPOLYZER 2

\Rightarrow MESOPIC PUPIL SIZE
C PHOTOPIC PUPIL SIZE
\Rightarrow PUPILLARY SHIFT

Nom:			
Né[e] le:	18.03 .58		
			Small pupil:
:---			
Moy.:			
Minimum:			
X:			
Y:			

Dist. to Apex: 0.24 mm

Pupil Center Shift:

Interpolated: $0.18 \mathrm{~mm}[2-7 \mathrm{~mm}]$
Measured: 0.10 mm

Wide pupil:	
Moy.:	6.52 mm
Maximum:	6.81 mm
X:	-0.30 mm
Y:	-0.16 mm

Dist. to Apex:0.34mm

WAVELIGHT - ALLEGRO TOPOLYZER VARIO

Nom:				Nate ex.: $\sqrt{12.11 .13}$
Né(e) le:	$\mathbf{1 8 . 0 3 . 5 8}$	Oeil: \mid Gauche		

Small pupil:	
Moy.:	3.44 mm
Minimum:	3.26 mm
$\mathrm{X}:$	0.19 mm
$\mathrm{Y}:$	-0.13 mm

Dist. to Apex:0.23mm

Pupil Center Shift: Interpolated: 0.32 mm [$2-7 \mathrm{~mm}$] Measured: 0.13 mm

Wide pupil:	
Moy.:	5.45 mm
Maximum:	5.72 mm
X:	0.31 mm
Y:	-0.09 mm

Dist. to Apex:0.33mm

WAVELIGHT - ALLEGRO TOPOLYZER VARIO
Patient Examen Affichage Paramètres T-CAT Divers

$\left[\begin{array}{ll}\text { Small pupil: } & \\ \text { Moy.: } & 2.05 \mathrm{~mm} \\ \text { Minimum: } & 1.88 \mathrm{~mm} \\ \text { X: } & -0.19 \mathrm{~mm} \\ \text { Y: } & -3.80 \mathrm{~mm}\end{array}\right.$

Dist. to Apex:3.80mm

Pupil Center Shift:

Interpolated: 5.13 mm [2-7mm]
Measured: 2.29 mm

Wide pupil:	
Moy.: 4.27 mm Maximum: 4.54 mm X: -0.26 mm Y: -1.52 mm	

Dist. to Apex:1.54mm

Patient Examen Afichage Parametres T-CAT

Pupil Center Shift:

Interpolated: 0.74 mm [$2-7 \mathrm{~mm}$]
Measured: 0.30 mm

Wide pupil:	
Moy.:	3.92 mm
Maximum:	4.19 mm
X:	0.17 mm
Y:	-0.15 mm

Dist. to Apex:0.23mm

3. THE PUPILLOMETRY

Mesopic pupil size in a refractive surgery population (13,959 eyes).

- Linke SJ, Baviera J, Katz T. - Optom Vis Sci. 2012 Aug ; 89(8) : 1156-64

Mesopic pupil size $=6.45 \pm 0.82 \mathrm{~mm}$ (mean age 36.07 years). $5.96 \pm 0.8 \mathrm{~mm}$ in hyperopic astigmatism, $6.36 \pm 0.83 \mathrm{~mm}$ in high astigmatism, $6.51 \pm 0.8 \mathrm{~mm}$ in myopic astigmatism.

Daytime variations in pupil size under photopic conditions. Kobashi H, Kamiya K, Ishikawa H, Shimizu K. - Optom Vis Sci. 2012 Feb;89(2):197-202.

Photopic pupil size $=3.08$ to 3.91 mm (mean age 27.3 years)

4. THE OPTICAL BIOMETER

Right

KM

Ref. Index: 1.3375

KM Mire	K	CYL	K1	K2	Axis	KM Mire	K		CYL	K1		K2	Axis
\$2.4 mm	44.58 D	- 1.12 D	44.06	45.18 D	152	\$2.4 mm	44.23	D -	- 0.87 D	43.83	D	44.70 D	5
\$3.3 mm	44.35 D	-0.99 D	43.89	44.88 D	169	\$3.3 mm	44.23	D	- 1.04 D	43.72	D	44.76 D	5
ACD/CCT													

(4)

DISCUSSION

DISCUSSION

- Performing the clinical (defocus curve) and instrumental examinations (Topolyzer pupillometer, OPD-scan-III, optical biometer) = complex task.
- Launching of an prospective study : results and statistics to be completed within the next trimesters
- Time-consuming measurements +++
- Medical and scientific activity often mixed in the lab (for better or for worse) : the unit clinical activity often restricted access to the measuring equipment for research activities...

Trade-off between positive spherical aberrations

 and diffraction
POSITIVE

SPHERICAL ABERRATIONS

DIFFRACTION ALONE

PUPIL
SIZE

PSF

7 mm
6 mm

LIGHT HALOS

LIGHT HALOS

